Crystal and Molecular Structure of Carbohydrazide

By P. Domiano, M. A. Pellinghelli ând A. Tiripicchio
Istituti di Chimica Generale e di Strutturistica Chimica, Università di Parma, Parma, Italy

(Received 24 March 1972)

Abstract

The crystal structure of carbohydrazide, $\mathrm{OC}\left(\mathrm{NH}-\mathrm{NH}_{2}\right)_{2}$, has been determined from X-ray intensity data ($\mathrm{Cu} K \alpha$ radiation) measured with an automatic diffractometer. The space group is $P 2_{1} / c$ with unit-cell dimensions $a=3 \cdot 728$ (2), $b=8 \cdot 841$ (3), $c=12 \cdot 659$ (7) $\AA ; \beta=109 \cdot 1$ (1) ${ }^{\circ}, V=394 \cdot 3 \AA^{3}, Z=4$. The structure was solved by the symbolic addition procedure and refined by the full-matrix least-squares method to $R=4 \%$. The molecule, depending upon rotations around the bonds $\mathrm{C}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$, has one $-\mathrm{NH}-\mathrm{NH}_{2}-$ group in cis, gauche position (cis position with respect to $\mathrm{C}-\mathrm{O}$, with $-\mathrm{NH}_{2}$ in gauche position with respect to $\mathrm{C}-\mathrm{N}$) and the second group $-\mathrm{NH}-\mathrm{NH}_{2}$ in trans, antigauche position. The different conformational orientations do not alter appreciably bond distances and angles. The group of atoms $\mathrm{N}-\mathrm{CO}-\mathrm{N}$ is planar, with bond distances and angles practically equal to those in urea. One hydrogen bond $-\mathrm{NH} \cdots \mathrm{NH}_{2}-=2.950 \AA$ joins the molecules in chains parallel to [001] and weak hydrogen bonds, both $\mathrm{N} \cdots \mathrm{O}$ and $\mathrm{N} \cdots \mathrm{N}$, connect the chains.

Introduction

Several investigations of the properties of thiocarbohydrazide, $\mathrm{SC}\left(\mathrm{NH}-\mathrm{NH}_{2}\right)_{2}$ (hereafter tcaz), and its derivatives both in the crystal state and in solution have been undertaken in this laboratory. The tcaz molecule can assume, by rotation around the bond $\mathrm{C}-\mathrm{N}$, two different conformations of the hydrazinic radicals with respect to the bond $\mathrm{C}-\mathrm{S}$; one with both groups rotated in such a way as to bring $-\mathrm{NH}_{2}$ toward $\mathrm{C}-\mathrm{S}$, i.e. in cis, cis conformation, and the other with one $-\mathrm{NH}-\mathrm{NH}_{2}$ group rotated in cis position and the second in trans position, i.e. in cis, trans conformation. The first conformation is found in the neutral molecule (Braibanti, Tiripicchio \& Tiripicchio Camellini, 1969), in the monoprotonated cation (to be published) and in the chelate molecule (Bigoli, Braibanti, Manotti Lanfredi, Tiripicchio \& Tiripicchio Camellini, 1971); the second type is found in biprotonated tcaz (Braibanti, Pellinghelli, Tiripicchio \& Tiripicchio Camellini, 1971). We have now undertaken the study of carbohydrazide, $\mathrm{OC}\left(\mathrm{NH}-\mathrm{NH}_{2}\right)_{2}$ (hereafter caz) and its derivatives to define the differences between tcaz and caz, in structure and in chemical behaviour. The results of the structural determination of the neutral caz molecule are presented here.

Experimental

Preparation

Prismatic colourless crystals of the commercial product were chosen for the X-ray analysis.

Crystal data

Compound: carbohydrazide, $\mathrm{OC}\left(\mathrm{NH}-\mathrm{NH}_{2}\right)_{2}$ Formula weight 90.09
Crystal class: monoclinic prismatic
Unit-cell parameters (determined from rotation and Weissenberg photographs and refined from the leastsquares fit to $(\theta, \chi, \varphi)_{h k l}$ values of 13 reflexions measured on a Siemens single crystal diffractometer, $\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$):

$$
\begin{aligned}
& a=3 \cdot 728(2), b=8 \cdot 841(3), c=12 \cdot 659(7) \AA \\
& \beta=109 \cdot 1(1)^{\circ}, V=394 \cdot 3 \AA^{3} ; Z=4 \\
& D_{x}=1 \cdot 517, D_{m}=1 \cdot 525 \mathrm{~g} \cdot \mathrm{~cm}^{-3} \\
& \mu(\mathrm{Cu} K \alpha)=11 \cdot 17 \mathrm{~cm}^{-1} ; \mathrm{F}(000)=192
\end{aligned}
$$

Space group: $P 2_{1} / c\left[C_{2 h}\right.$ (5), No. 14] from systematic absences.

Intensity data

The intensity data were collected on a single-crystal automated Siemens diffractometer on line with a Siemens $304 / \mathrm{P}$ computer using Ni -filtered $\mathrm{Cu} K \alpha$ radiation and the $\omega-2 \theta$ scan technique. A prismatic crystal of approximate dimensions $0.070 \times 0.080 \times 0.200 \mathrm{~mm}$ was aligned with its [100] axis along the φ axis of the diffractometer. With the maximum value of $2 \theta=140^{\circ}$ the number of collected independent reflexions was 755. Of these, 652 were used in the crystal analysis, taking as unobserved the reflexions whose intensities were less than twice their standard deviations $\left[\sigma^{2}(I)=\right.$ total counts $\left.+(0.005 I)^{2}\right]$. Corrections for Lorentz and polarization factors were made in the usual way, but no correction was made for absorption.

Structure determination and refinement

The structure was solved by symbolic addition procedure (Germain \& Woolfson, 1968). An absolute scale factor and the mean isotropic temperature factor were obtained by Wilson's (1942) method. The normalized structure factors, E_{h} 's, were computed from the equation

$$
E_{h}^{2}=F_{h}^{2} / \varepsilon \sum_{j=1}^{N} f_{j h}^{2},
$$

where ε is unity for all reflexions other than $h 0 l$ and $0 k 0$ for which $\varepsilon=2 \cdot 0 . N$ is the number of atoms in the unit cell and F_{h} is on an absolute scale and corrected for thermal motion. Only normalized structure factors greater than 1.5 were used in the phase determination. Reflexions $110(|E|=2 \cdot 67), 145(|E|=2 \cdot 77)$ and $2,1, \overline{12}$ $(|E|=3.06)$ were chosen to define the origin. Symbols a, b, c and d were assigned to the phases of the reflexions $17 \overline{8}(|E|=3 \cdot 61), 068(|E|=3 \cdot 01), 12 \overline{5}(|E|=2 \cdot 30)$

Fig. 1. Bond lengths and angles in the carbohydrazide molecule.
and $0,2,10(|E|=2 \cdot 83)$ respectively. From inspection of the interactions among the signs and symbols, it was decided that all the symbols were probably minus. With these assignments, the signs of 130 reflexions with $E \geq 1.30$ were determined and used to compute an E map which revealed the whole structure except for the hydrogen atoms. A structure-factor calculation using atomic parameters obtained from this E map gave an R value of 0.52 . This value decreased to 0.14 after six cycles of full-matrix least-squares refinement with isotropic temperature factors. Anisotropic temperature factors were then introduced and the R value decreased to 0.071 after six cycles. At this stage an ($F_{o}-F_{c}$) synthesis was computed and the positions of the hydrogen atoms were found. The six hydrogen atoms were included in the subsequent refinement with isotropic temperature factors. R dropped to 0.042 , excluding non-observed reflexions. Unit weights were used up to this point, then the scheme $1 / w=$ $\left(A+B F_{o}+C F_{o}^{2}\right)$ was assumed; $A=0.06003, B=0.08085$ and $C=0.00027225$ were determined by plotting ΔF against $\left|\bar{F}_{o}\right|$. The final value of R was $0 \cdot 040$.

The final atomic coordinates are given in Table 1 and the thermal parameters in Table 2. A list of observed and calculated structure factors is available either from the authors on request or as supplementary publication number 30007*
The atomic scattering factors of Cromer \& Mann (1968) were used for O, N and C and those of Stewart, Davidson \& Simpson (1965) for H.

[^0]Table 1. Final fractional atomic coordinates $\left(\times 10^{4}\right)$ with e.s.d.'s

	x	y	z
O	$6522(3)$	$4132(1)$	$3582(1)$
$\mathrm{N}(1)$	$8560(4)$	$2340(2)$	$4934(1)$
$\mathrm{N}(2)$	$7828(5)$	$3243(2)$	$5765(1)$
$\mathrm{N}(3)$	$8081(5)$	$1817(2)$	$318(1)$
$\mathrm{N}(4)$	$9539(5)$	$0347(2)$	$3443(1)$
C	$7665(4)$	$2827(2)$	$3868(1)$
$\mathrm{N}(1)$	$9036(57)$	$1383(26)$	$5077(18)$
$\mathrm{H}(2)$	$9163(67)$	$4099(29)$	$586(19)$
$\mathrm{H}(3)$	$5396(74)$	$3567(27)$	$5502(20)$
$\mathrm{H}(4)$	$7920(59)$	$2153(24)$	$2422(19)$
$\mathrm{H}(5)$	$8049(60)$	$-0304(24)$	$2916(18)$
$\mathrm{H}(6)$	$11846(70)$	$0281(27)$	$3371(18)$

All the calculations were performed on the CDC 6600 computer of the Centro di Calcolo Elettronico Interuniversitario dell'Italia Nord-Orientale (Bologna), using the programs written by Immirzi (1967).

Description of the structure

The structure of the caz molecule (Fig. 1) is similar to tcaz, i.e. it is of type cis, trans. The bond lengths and angles in the molecule are given in Table 3. The distances $\mathrm{C}-\mathrm{O}=1.242$ (2) \AA and $\mathrm{C}-\mathrm{N}=1.349 \quad$ (2), 1.350 (2) \AA are equal to those found by neutron diffraction in urea $[1.243$ (6) and 1.351 (7) \AA, respectively: Worsham, Levy \& Peterson, 1957]. The values $1 \cdot 298$ (2) \AA for $\mathrm{C}-\mathrm{O}$ and 1.315 (1), 1.312 (1) \AA for $\mathrm{C}-\mathrm{N}$, determined by neutron diffraction in uronium" ${ }^{\prime \prime}$ nitrate (Worsham \& Busing, 1969) indicate that in caz the increase of double bond character of $\mathrm{C}-\mathrm{O}$ is paralleled by an increase in single bond character of $\mathrm{C}-\mathrm{N}$. The relation between lengthening of $\mathrm{C}=\mathrm{O}$, or $\mathrm{C}=\mathrm{S}$, and shortening of $\mathrm{C}-\mathrm{N}$ is a general property of ureide, $\mathrm{N}-\mathrm{CO}-\mathrm{N}$, and thioureide, $\mathrm{N}-\mathrm{CS}-\mathrm{N}$, groups, which confirms conjugation in them. This is also confirmed by the planarity of $\mathrm{N}-\mathrm{CO}-\mathrm{N}$, again in accordance with urea. The best plane through $\mathrm{N}(1), \mathrm{C}, \mathrm{O}, \mathrm{N}(3)$ is $-0.9351 X$ $-0.3039 Y-0.1822 Z=-2.7770$, where X, Y, Z are coordinates in \AA referred to a system with $X \equiv x$, $Y \equiv y$ and $Z \perp(X, Y)$. Deviations from the plane (with e.s.d.'s in parentheses) are: $\Delta[\mathrm{N}(1)]=-0.0002$ (16), $\Delta[\mathrm{C}]=0.0005 \quad(16), \Delta[\mathrm{O}]=-0.0001 \quad(12), \Delta[\mathrm{N}(3)]=$ -0.0002 (19) \AA. Atoms $\mathrm{H}(1)$ and $\mathrm{H}(4)$ deviate

Table 2. Thermal parameters with e.s.d.'s
The anisotropic thermal parameters are in the form $\exp \left[-0 \cdot 25\left(h^{2} a^{* 2} B_{11}+\cdots 2 k l b^{*} c^{*} B_{23}\right)\right]$.

	B_{11} or B	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
O	$4 \cdot 18$ (5)	1.81 (4)	$2 \cdot 18$ (4)	$0 \cdot 52$ (4)	$0 \cdot 91$ (4)	0.25 (3)
N(1)	$4 \cdot 62$ (7)	1.96 (5)	$1 \cdot 44$ (5)	0.74 (5)	$1 \cdot 18$ (5)	-0.04 (4)
N(2)	$4 \cdot 13$ (7)	$2 \cdot 37$ (5)	$1 \cdot 69$ (5)	$0 \cdot 23$ (5)	$1 \cdot 42$ (5)	-0.43 (4)
N(3)	$5 \cdot 23$ (8)	1.89 (5)	$1 \cdot 64$ (5)	$0 \cdot 53$ (5)	1.33 (5)	0.01 (4)
N(4)	$3 \cdot 81$ (7)	1.74 (5)	$2 \cdot 26$ (5)	$0 \cdot 27$ (4)	$1 \cdot 16$ (5)	-0.21 (4)
C	$2 \cdot 56$ (6)	$1 \cdot 86$ (5)	$1 \cdot 60$ (5)	-0.19 (4)	$0 \cdot 65$ (5)	$-0 \cdot 11(4)$
H(1)	$3 \cdot 30$ (42)					
H(2)	$4 \cdot 19$ (49)					
H(3)	$4 \cdot 26$ (48)					
H(4)	$3 \cdot 53$ (42)					
H(5)	$3 \cdot 28$ (39)					
H(6)	$4 \cdot 02$ (48)					

Fig. 2. Conformation of the carbohydrazide molecule: group $\mathrm{N}(1) \mathrm{H}-\mathrm{N}(2) \mathrm{H}_{2}$ is in cis, gauche position and group $\mathrm{N}(3) \mathrm{H}-\mathrm{N}(4) \mathrm{H}_{2}$ in trans, antigauche position.
$\Delta[\mathrm{H}(1)]=0 \cdot 1152(225)$ and $\Delta[\mathrm{H}(4)]=-0 \cdot 1522(232) \AA$ from the plane. The atoms $N(2)$ and $N(4)$ are +0.1532 (19) and -0.0585 (19) \AA out of this plane, respectively; they are displaced on opposite sides of the plane, thus differing from the tcaz molecule in which both atoms are on the same side. The angles $\mathrm{O}-\mathrm{C}-\mathrm{N}(1), \mathrm{O}-\mathrm{C}-\mathrm{N}(2)$ and $\mathrm{N}(1)-\mathrm{C}-\mathrm{N}(3)$, of $122 \cdot 4$, $121 \cdot 1$ and $116 \cdot 4^{\circ}$, are equal to those found in urea ($121 \cdot 5,121.5$ and 117° respectively). These angles and the planarity of the ureide group are consistent with the assignment of $s p^{2}$ hybridization to the bonds around carbon, whereas the sums of the angles around $\mathrm{N}(1)$ and $N(3)$ indicate that these two nitrogen atoms are not in purely $s p^{2}$ hybridization. This situation is the same as that of tcaz and differs from that in urea. The angles around the $\mathrm{N}(2)$ and $\mathrm{N}(4)$ atoms are in good agreement with the expected $s p^{3}$ hybridization.
The rotation angles of hydrazinic groups (Table 4) show that they undergo double conformational rotations, one around the line $\mathrm{C}-\mathrm{N}$ and another around the line $\mathrm{N}-\mathrm{N}$ (Fig. 2). Therefore the group
$-\mathrm{N}(1) \mathrm{H}-\mathrm{N}(2) \mathrm{H}_{2}$ can be said to be in cis position with respect to $\mathrm{C}=\mathrm{O}$, to specify the rotation around $\mathrm{C}-\mathrm{N}(1)$

Table 3. Bond distances and angles in the molecule

$\mathrm{C}-\mathrm{O}$	1.242 (2) Å	$\mathrm{O}-\mathrm{C}-\mathrm{N}(1)$	122.4 (1) ${ }^{\circ}$
$\mathrm{C}-\mathrm{N}(1)$	1.350 (2)	$\mathrm{O}-\mathrm{C}-\mathrm{N}(3)$	$121 \cdot 1$ (1)
$\mathrm{C}-\mathrm{N}(3)$	1.349 (2)	$\mathrm{N}(1)-\mathrm{C}-\mathrm{N}(3)$	116.4 (2)
$\mathrm{N}(1)-\mathrm{N}(2)$	1.416 (2)	$\mathrm{C}-\mathrm{N}(1)-\mathrm{N}(2)$	121.2 (2)
$\mathrm{N}(3)-\mathrm{N}(4)$	1.417 (3)	$\mathrm{C}-\mathrm{N}(1)-\mathrm{H}(1)$	119.0 (14)
$\mathrm{N}(1)-\mathrm{H}(1)$	0.87 (2)	$\mathrm{H}(1)-\mathrm{N}(1)-\mathrm{N}(2)$	117.9 (14)
$\mathrm{N}(2)-\mathrm{H}(2)$	$0 \cdot 89$ (3)	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{H}(2)$	$110 \cdot 6$ (16)
$\mathrm{N}(2)-\mathrm{H}(3)$	0.90 (3)	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{H}(3)$	$108 \cdot 6$ (15)
$\mathrm{N}(3)-\mathrm{H}(4)$	0.91 (2)	$\mathrm{H}(2)-\mathrm{N}(2)-\mathrm{H}(3)$	$103 \cdot 3$ (23)
$\mathrm{N}(4)-\mathrm{H}(5)$	0.92 (2)	$\mathrm{C}-\mathrm{N}(3)-\mathrm{N}(4)$	121.6 (1)
$\mathrm{N}(4)-\mathrm{H}(6)$	$0 \cdot 90$ (3)	$\mathrm{C}-\mathrm{N}(3)-\mathrm{H}(4)$	118.5 (14)
		$\mathrm{H}(4)-\mathrm{N}(3)-\mathrm{N}(4)$	118.5 (14)
		$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{H}(5)$	$106 \cdot 3$ (14)
		$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{H}(6)$	$108 \cdot 7$ (15)
		$\mathrm{H}(5)-\mathrm{N}(4)-\mathrm{H}(6)$	$105 \cdot 0$ (21)

and in gauche position with respect to $\mathrm{C}-\mathrm{N}(1)$, to specify the rotation around $\mathrm{N}(1)-\mathrm{N}(2)$. The group $-\mathrm{N}(3) \mathrm{H}-\mathrm{N}(4) \mathrm{H}_{2}$ can be said to be in trans pcsition with respect to $\mathrm{C}=\mathrm{O}$ and antigauche (gauche $+180^{\circ}$) position with respect to $\mathrm{C}-\mathrm{N}(3)$. Deviations of hydrogen atoms from perfectly symmetric gauche or antigauche positions are in the range 3 to 17°.

The nitrogen-nitrogen bonds in the two hydrazinic groups are equal $[\mathrm{N}-\mathrm{N}=1.416$ (2) and 1.417 (3) $\AA]$. These values agree well with those found for the same bonds in hydrazine derivatives (Braibanti, Manotti Lanfredi, Tiripicchio \& Bigoli, 1970) and in thiosemicarbazide (Andreetti, Domiano, Fava Gasparri, Nardelli \& Sgarabotto, 1970).

The packing of caz molecules in the crystal structure is determined by several hydrogen bonds (Table 5). A clinographic projection of the structure with the network of hydrogen bonds is shown in Fig. 3. The hydrogen bond between $\mathrm{N}(2)$ and $\mathrm{N}(3)$ [2.950 (3) \AA] joins caz molecules in chains parallel to [001]. Weaker $\mathrm{N} \cdots \mathrm{O}$ and $\mathrm{N} \cdots \mathrm{N}$ hydrogen bonds hold together the chains.

The authors thank Professor A. Braibanti for helpful discussions. They are also grateful to Professor

Table 4. Rotation angles of hydrazinic groups around $\mathrm{N}-\mathrm{N}$
$\mathrm{N}(1) \mathrm{H}-\mathrm{N}(2) \mathrm{H}_{2}$ (cis)

	Plane	φ	Plane		φ
a	$\mathrm{C}, \mathrm{N}(1), \mathrm{N}(2)$	0°	a	$\mathrm{C}, \mathrm{N}(3), \mathrm{N}(4)$	0°
b	$\mathrm{~N}(1), \mathrm{N}(2) \mathrm{H}(3)$	49.72	b	$\mathrm{~N}(3), \mathrm{N}(4), \mathrm{H}(5)$	137.03
c	$\mathrm{H}(1), \mathrm{N}(1), \mathrm{N}(2)$	$164 \cdot 15$	c	$\mathrm{H}(4), \mathrm{N}(3), \mathrm{N}(4)$	193.65
d	$\mathrm{~N}(1), \mathrm{N}(2), \mathrm{H}(2)$	$297 \cdot 08$	d	$\mathrm{~N}(3) \mathrm{N}(4), \mathrm{H}(6)$	$249 \cdot 52$
e	$\mathrm{~N}(1), \mathrm{N}(2)$, bisector $\hat{\mathrm{bd}}$	$173 \cdot 40$	e	$\mathrm{~N}(3), \mathrm{N}(4)$, bisector bd	$13 \cdot 27$

Rotation from gauche conformation

Table 5. Hydrogen bonds

$\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{N}\left(4^{\mathrm{i}}\right)$	3.068 (3) \AA
$\mathrm{H}(1) \cdots \mathrm{N}\left(4^{\mathbf{i}}\right)$	$2 \cdot 34$ (2)
$\mathrm{N}(2)-\mathrm{H}(2) \cdots \mathrm{O}^{\text {ii }}$	3.061 (2)
$\mathrm{H}(2) \cdots \mathrm{O}^{\text {ii }}$	$2 \cdot 19$ (2)
$\mathrm{N}(2)-\mathrm{H}(3) \cdots \mathrm{O}^{\text {iii }}$	3.095 (2)
$\mathrm{H}(3) \cdots \mathrm{O}^{\text {iii }}$	$2 \cdot 56$ (3)
$\mathrm{N}(3)-\mathrm{H}(4) \cdots \mathrm{N}\left(2^{\text {iv }}\right.$)	2.950 (3)
$\mathrm{H}(4) \cdots \mathrm{N}\left(2^{\text {iv }}\right)$	$2 \cdot 12$ (3)
$\mathrm{N}(4)-\mathrm{H}(5) \cdots \mathrm{O}^{\text {v }}$	3.007 (4)
$\mathrm{H}(5) \cdots \mathrm{O}^{\text {v }}$	$2 \cdot 15$ (2)

$\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{N}\left(4^{\mathrm{i}}\right)$	$141 \cdot 1$ (19) ${ }^{\circ}$
$\mathrm{H}(1)-\mathrm{N}(1) \cdots \mathrm{N}\left(4^{\mathrm{i}}\right)$	$28 \cdot 6$ (14)
$\mathrm{N}(2)-\mathrm{H}(2) \cdots \mathrm{O}^{\text {ii }}$	$166 \cdot 0$ (22)
$\mathrm{H}(2)-\mathrm{N}(2) \cdots \mathrm{O}^{\text {ii }}$	10.0 (16)
$\mathrm{N}(2)-\mathrm{H}(3) \cdots \mathrm{O}^{\text {iii }}$	118.7 (19)
$\mathrm{H}(3)-\mathrm{N}(2) \cdots \mathrm{O}^{\text {iii }}$	$46 \cdot 4$ (15)
$\mathrm{N}(3)-\mathrm{H}(4) \cdots \mathrm{N}\left(2^{\text {iv }}\right.$)	$151 \cdot 3$ (19)
$\mathrm{H}(4)-\mathrm{N}(3) \cdots \mathrm{N}\left(2^{\text {iv }}\right)$	$20 \cdot 1$ (13)
$\mathrm{N}(4)-\mathrm{H}(5) \cdots \mathrm{O}^{v}$	154.4 (19)
$\mathrm{H}(5)-\mathrm{N}(4) \cdots \mathrm{O}^{\text {v }}$	18.0 (14)

Asymmetric units

No label	x,	y,	z
i	$2-x$,	$-y$,	$1-z$
ii	$2-x$,	$1-y$,	$1-z$
iii	$1-x$,	$1-y$,	$1-z$
iv	x,	$\frac{1}{2}-y$,	$-\frac{1}{2}+z$
v	$1-x$,	$\frac{1}{2}+y$,	$\frac{1}{2}-z$

Fig. 3. Clinographic projection of the structure with network of hydrogen bonds.
L. Cavalca and Professor M. Nardelli for permission to use the equipment and the program library of the Centro di Strutturistica Diffrattometrica del C.N.R.

References

Andreetti, G. D., Domiano, P., Fava Gasparri, G., Nardelli, M. \& Sgarabotto, P. (1970). Acta Cryst. B26, 1005.
Bigoli, F., Braibanti, A., Manotti Lanfredi, A. M., Tiripicchio, A. \& Tiripicchio Camellini, M. (1971). Inorg. Chim. Acta, 5, 392.
Braibanti, A., Manotti Lanfredi, A. M., Tiripicchio, A. \& Bigoli, F. (1970). Acta Cryst. B26, 806.

Braibanti, A., Pellinghelli, M. A., Tiripicchio, A. \& Tiripicchio Camellini, M. (1971). Inorg. Chim. Acta, 5, 523.
Braibanti, A., Tiripicchio, A. \& Tiripicchio Camellini, M. (1969). Acta Cryst. B25, 2286.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321.
Germain, G., \& Woolfson, M. M. (1968). Acta Cryst. B24, 91.
Immirzi, A. (1967). Ric. Sci. 37, 743.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Wilson, A. J. C. (1942). Nature, Lond. 150, 152.
Worsham, J. E. Jr \& Busing, W. R. (1969). Acta Cryst. B25, 572.
Worsham, J. E. Jr, Levy, H. A. \& Peterson, S. W. (1957). Acta Cryst. 10, 319.

[^0]: * This table has been deposited with the National Lending Library, England, as Supplementary Publication No. 30007. Copies may be obtained through the Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ , England.

